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nuclei  can both  lead to b ind ing  relative to the pro- 
molecule.  

Nevertheless  the value of  analyses of  Ap in terms 
of  b ind ing  a lone must  be questioned.  It is clear f rom 
our analyses  on N2 and  F2 that  major  sources of  
b inding  are large sharp changes in density close to 
the nuclei.  The deformat ion  density in the centre of  
the bond,  or far  beyond  the nuclei ,  plays little or no 
role in b ind ing  the nuclei.  This does not imply,  
however,  that  b road  topographica l  features are un- 
impor tan t  in chemical  bonding.  The b road  topo- 
graphical  characterist ics of  the density are de te rmined  
by the requirements  of  an t i symmetry  in the wavefunc-  
tion, modu la t ed  by polar iza t ion terms that  min imize  
the energy. These broad  features make significant 
contr ibut ions to the b ind ing  energy, which  is funda-  
menta l  to chemical  bonding.  

This work was suppor ted by the Aust ra l ian  
Research Grants  Scheme. 
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Abstract 

Highly  symmetr ica l  crystall ine mater ia l s  usual ly  
possess a sufficient n u m b e r  of  equivalent  slip systems 
to accommoda te  a given plast ic  strain, i.e. to ident i fy  
five components  in a second-rank tensor. A direct 
geometrical  representat ion would  thus require a 
f ive-dimensional  space when  appl ied  to any super- 
abundan t  set of  slip systems. However,  such a 
difficulty can be avoided: a three-d imensional  polyhe-  
dron of  appropr ia te  crystal lographic symmetry  is 

found  to provide  a correct descript ion of  all inter- 
dependence  re la t ionships  between the glide systems. 
As an example ,  this i somorph i sm is used here in the 
effective select ion of  active slips. 

The accommoda t ion  of  a given plast ic strain in poly- 
crystall ine mater ia ls  m a y  involve a n u m b e r  of  differ- 
ent mechan i sms  (depending  on dislocat ion motions)  
and their  possible  combina t ions  such as slip or twin- 
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Table 1. Identification o f  the twelve strain tensors u k 

u t = 1 1 u2  = 0 

0 0 - - 1  - 

U3----"-  ~ - - 1  - -1  U4 = 1 - 

1 1 0 

 6I! -it ° i/ U 5 ---- 0 U 6 = - -1  

1 --  - -1  

u7  = - 1 - u s  = ~  0 

0 - 1 - 

 6(i ° °/  6(i i) u 9 =  - 1  1 U t o =  - 1 

- 1  1 0 

1 1 - 1  1 0 0 0 

U l l  = 0 11112 = - - I  -- 

- -1  -- -- 1 

ning inside individual crystallites as well as edge 
accommodations along grain boundaries (de 
Fouquet, 1975). 

Slip has been identified as the effective accommo- 
dation mechanism for grains of high crystallographic 
symmetry. This situation occurs in cubic materials 
providing a sufficient number of equivalent degener- 
ate glide systems. For both b.c.c, and f.c.c, lattices, 
the slip direction has been found to correspond 
respectively to the dense (111) and (110) rows. 
However, some controversy remains in slip-plane 
determinations especially in the case of b.c.c, struc- 
tures where CII0), (112) and (123) perpendicular 
directions have been observed at high temperatures 
(Kroupa, 1968). 

The following discussion is restricted for con- 
venience to the superabundant set of twelve glides 
representing the {111}(110) slip systems in f.c.c, crys- 
tals. In any one of the twelve slip coordinate systems, 
the corresponding basic unitary strain Uk and its sym- 
metrical part ek (k = 1, 12) are given by the second- 
rank tensors 

uk = 0 0 , ek = 2  0 . (1) 
0 0 0 1 

The remaining antisymmetrical part allows the pre- 
diction of the pure rotational effects of the grains and 
hence the texture formation. 

The use of a convenient Euler matrix for every 
glide brings the above expressions into the [100], 
[010], [001] crystal coordinate system, a specific iden- 
tification of the twelve strain tensors Uk being given 
in Table 1. Further simple calculations then determine 

Table 2. Interdependence relationships: the twelve- 
element algebraic modulus 

(elo) 

e I ~ e2  ~ ~ ~ ~ e3! 

s ~ 
e 4  ~ ~, s e s  ~ e 6 

e 7 ~ ~ e s  ~ ~ e 9  

e l o  ~ ~ e l l "  ~ e l 2  

( e l )  - 

both antisymmetrical and symmetrical components. 
In a similar way, identical results are also obtained 
for b.c.c, crystals and {110}(111) slip systems since 

(Uij)bk'C'C'~'(Uji)~ c'c'. (2) 

Hence, the twelve ek tensors (Royer, Mohr & Tavard, 
1978) can be used to represent indistinctly pure defor- 
mation in both b.c.c, and f.c.c, materials, since an 
interchange between the glide direction and the nor- 
mal to the slip plane in {111} (110) f.c.c, and {110} 
(I 11) b.c.c, systems does not affect the expressions of 
the pure deformation tensors ek. 

The above set is found superabundant, i.e. five 
independent systems are sufficient here to reproduce 
any pure deformation. Their simplest interdepen- 
dence relationships are listed below as 

el + e 2  + e 3  = 0, 

e4 -t- e5 d- e 6 = 0, 

e7 + e 8  + e 9  = 0, 

e l o + e ~  +e~2 = 0, 

el +e9+el l  = 0, 

e2 + e6+ elo = 0, 

e3 + e5 +e7 = 0, 

e4+ es+el2 = 0, 

and 

(3) 

el -31- e4 = e7 + ezo, 

e2 + e8 = e5 + e~, (4) 

e3 + el2 = e6 + e9. 

A useful graph (Table 2) has already been used in 
preliminary attempts to describe this twelve-element 
algebraic modulus, i.e. to supply a symbolic rep- 
resentation of (3) and (4). 

Furthermore, the following set of six basic tensors 
vj (Table 3) can be verified as simultaneously having 
null projections on eight of the ek systems. The four 
remaining ones [as listed below in (5)] are then equal 
in magnitude: 

(I) el, e2, elo, ell; 

(II) el, e3, e7, e9; 

(III) e2, e3, es, e6; 

(IV) e4, es, e7, e8; 

(V) e4, e6, elo, el2; 

(VI) e~,eg, e11, e12. 

(5) 
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Table 3. Basic tensors vj 

v, Tl , :, 0° 

v3 = 1 v 4 = - - - ~ | 0  1 - 

0 2 10" -1 

¥5 "/" 0 ¥6 = ~ 1 

= - - ~ - - 1  0 0 

This specific property was used to simplify Bishop's 
geometrical description of the multidimensional plas- 
tic yield surface (Bishop, 1953). Indeed, convenient 
combinations ofv j  reproduce the twenty-eight Bishop 
stress states. 

® 

® ® 

® 

Table 4. Selection o f  pairs o f  active glide systems, 
classification o f  geometricaUy equivalent combinations 

1-2, 1-3, 1-9, 1-11, . . .  

1-7, 1-10, ... 
1-5, 1-6, 1-8, 1-12, ... 
1-4, (2-8, 3-12, 5-11, 6-9, 7-10) 

However, a more efficient representation of the 
above properties was found, depicted in three- 
dimensional space by the eight triangular and six 
square faces of a regular polyhedron,  which obviously 
possesses cubic symmetry (Fig. 1). The square faces 
of this tetareskaidecahedron correspond here to the 
vj basic tensor properties. Furthermore, (3) and (4) 
result from a convenient linkage between three or 
four corresponding comers. 

This isomorphism allows the geometrical proper- 
ties of a given set of independent  active slip systems 
as used in relaxed Taylor models of plastic deforma- 
tion (Van Houtte, 1982; Tavard & Royer, 1984) to be 
pointed out. It also helps to classify the (12) possible 
combinations between n glides (n = 1, 5) in symmetri- 
cally equivalent configurations (Kooks, Canova & 
Jonas, 1983). In the example shown in Table 4, the 
geometrically equivalent combinations of two active 
glides are built up systematically from those symmetry 
properties exhibited in Fig. 1. 

While this three-dimensional representation is here 
employed for multidimensional tensor properties it 
may of course be extended to any other species of 
crystallographic slips. 

Fig. 1. Geometrical representation of the interdependence 
relationships. 
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