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nuclei can both lead to binding relative to the pro-
molecule.

Nevertheless the value of analyses of Ap in terms
of binding alone must be questioned. It is clear from
our analyses on N, and F, that major sources of
binding are large sharp changes in density close to
the nuclei. The deformation density in the centre of
the bond, or far beyond the nuclei, plays little or no
role in binding the nuclei. This does not imply,
however, that broad topographical features are un-
important in chemical bonding. The broad topo-
graphical characteristics of the density are determined
by the requirements of antisymmetry in the wavefunc-
tion, modulated by polarization terms that minimize
the energy. These broad features make significant
contributions to the binding energy, which is funda-
mental to chemical bonding.

This work was supported by the Australian
Research Grants Scheme.
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By CrLAUDE TAVARD, FRANCOIS ROYER AND PATRICE TWARDOWSKI

Centre de Recherches ‘Matiére, Rayonnements et Structures’, Faculté des Sciences, Ile du Saulcy, 57045 Metz
CEDEX, France

(Received 5 June 1984; accepted 1 January 1985)

Abstract

Highly symmetrical crystalline materials usually
possess a sufficient number of equivalent slip systems
to accommodate a given plastic strain, i.e. to identify
five components in a second-rank tensor. A direct
geometrical representation would thus require a
five-dimensional space when applied to any super-
abundant set of slip systems. However, such a
difficulty can be avoided: a three-dimensional polyhe-
dron of appropriate crystallographic symmetry is

0108-7673/85/040353-03$01.50

found to provide a correct description of all inter-
dependence relationships between the glide systems.
As an example, this isomorphism is used here in the
effective selection of active slips.

The accommodation of a given plastic strain in poly-
crystalline materials may involve a number of differ-
ent mechanisms (depending on dislocation motions)
and their possible combinations such as slip or twin-

© 1985 International Union of Crystallography
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" Table 1. Identification of the twelve strain tensors u,

-1 -1 -1 1 1 1

1 1
uy=—| 1 1 1 wp=—| 0 0 0
0o 0 0 -1 -1 -1

1 -1 1
1 1 »l)
0o 0 0

1 -1 -1 0 0 o
! o 0 o ! 1 -1 -1
W= U2 =" -1 -
J6 J6
T -1 -1 -1 1 1

ning inside individual crystallites as well as edge
accommodations along grain boundaries (de
Fouquet, 1975).

Slip has been identified as the effective accommo-
dation mechanism for grains of high crystallographic
symmetry. This situation occurs in cubic materials
providing a sufficient number of equivalent degener-
ate glide systems. For both b.c.c. and f.c.c. lattices,
the slip direction has been found to correspond
respectively to the dense (111) and (110) rows.
However, some controversy remains in slip-plane
determinations especially in the case of b.c.c. struc-
tures where (110), (112) and (123) perpendicular
directions have been observed at high temperatures
(Kroupa, 1968).

The following discussion is restricted for con-
venience to the superabundant set of twelve glides
representing the {111}(110) slip systems in f.c.c. crys-
tals. In any one of the twelve slip coordinate systems,
the corresponding basic unitary strain u, and its sym-
metrical part e, (k=1, 12) are given by the second-
rank tensors

00090 10 00
Ug = 0 01 , ek=‘§ 0 0 1. (1)
0 00 010

The remaining antisymmetrical part allows the pre-
diction of the pure rotational effects of the grains and
hence the texture formation.

The use of a convenient Euler matrix for every
glide brings the above expressions into the [100],
[010], [001] crystal coordinate system, a specific iden-
tification of the twelve strain tensors u, being given
in Table 1. Further simple calculations then determine

CRYSTALLOGRAPHIC SLIP SYSTEMS

Table 2. Interdependence relationships: the twelve-
element algebraic modulus

(e10)
~
~
~
e, e, _-ey
~ -
€1 _ s ™ e
=<
-
e~ eg -8
\,f’
3
e, e ~ e
10 PN 12

(e)” -
both antisymmetrical and symmetrical components.
In a similar way, identical results are also obtained
for b.c.c. crystals and {110}111) slip systems since

(ug)i'“' = (“ji)%c'c'- (2)
Hence, the twelve e, tensors (Royer, Mohr & Tavard,
1978) can be used to represent indistinctly pure defor-
mation in both b.c.c. and f.c.c. materials, since an
interchange between the glide direction and the nor-
mal to the slip plane in {111} (110} f.c.c. and {110}
(111) b.c.c. systems does not affect the expressions of
the pure deformation tensors e,.

The above set is found superabundant, ie. five
independent systems are sufficient here to reproduce
any pure deformation. Their simplest interdepen-
dence relationships are listed below as

e te,+e;=0, e, teyt+e,; =0,

e4+e5+e6=0, e2+e6+e10=0’

(3)

e, +eg+e, =0, e;t+es+e; =0,

e ote,;te,=0, e, tegte,=0,

and
e +e,=e;te,
e;te;=estey,, (4)
e;te,=egte,.

A useful graph (Table 2) has already been used in
preliminary attempts to describe this twelve-element
algebraic modulus, i.e. to supply a symbolic rep-
resentation of (3) and (4).

Furthermore, the following set of six basic tensors
v, (Table 3) can be verified as simultaneously having
null projections on eight of the e, systems. The four
remaining ones [as listed below in (5)] are then equal
in magnitude:

(I) ela €, e]0’ e11;
(I1) ey, e3, e, €5
(III) e2, e3’ e5’ €65
(5)
(IV) ey, e5,€5, €55
(V) ey €6, €50, €125
(VI) e87 e‘), elh e|2'
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Table 3. Basic tensors vy

000 1 01
/6 : ™6
Vi =T 011 V2=T 000
011 1 01
110 /0 0 O
fJE 6
vy=—11 1 0 Vg=—— 1 -1
2 2
0 0 0 o -1 1
1 0 -1 1 -1 0
/6 /6
vs=—\|0 0 O ve=—1|=1 1 0
2 2
-1 0 1 0 0 O

This specific property was used to simplify Bishop’s
geometrical description of the multidimensional plas-
tic yield surface (Bishop, 1953). Indeed, convenient
combinations of v; reproduce the twenty-eight Bishop
stress states.

@
o 7 N 0
e | e
O

Fig. 1. Geometrical representation of the interdependence

relationships.
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Table 4. Selection of pairs of active glide systems,
classification of geometrically equivalent combinations

1-2,
1-7,
1-5,
1-4,

1-3, 1-9,
1-10, ...
1-6, 1-8, 1-12, ...

(2-8, 3-12, 5-11, 6-9, 7-10)

1-11, ...

However, a more efficient representation of the
above properties was found, depicted in three-
dimensional space by the eight triangular and six
square faces of a regular polyhedron, which obviously
possesses cubic symmetry (Fig. 1). The square faces
of this tetareskaidecahedron correspond here to the
v, basic tensor properties. Furthermore, (3) and (4)
result from a convenient linkage between three or
four corresponding corners.

This isomorphism allows the geometrical proper-
ties of a given set of independent active slip systems
as used in relaxed Taylor models of plastic deforma-
tion (Van Houtte, 1982; Tavard & Royer, 1984) to be
pointed out. It also helps to classify the (';) possible
combinations between n glides (n =1, 5) in symmetri-
cally equivalent configurations (Kocks, Canova &
Jonas, 1983). In the example shown in Table 4, the
geometrically equivalent combinations of two active
glides are built up systematically from those symmetry
properties exhibited in Fig. 1.

While this three-dimensional representation is here
employed for multidimensional tensor properties it
may of course be extended to any other species of
crystallographic slips.
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